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Criteria of asymptotic stability for general linear mechanical systems are investigated. It is shown that the inequality first derived 
by Metelitsyn (1952) is a sufficient but not necessary condition for asymptotic stability. We argue that this inequality is of little 
use in applications. Metelitsyn's theorems based on his inequality as well as critical comments in the literature on these theorems 
are analysed. Practical sufficient stability criteria are obtained in terms of extreme eigenvalues of the system matrices. This analysis 
is of special value for rotor systems in a complex setting which is demonstrated by three examples. © 2004 Elsevier Ltd. All rights 
reserved. 

1.  I N T R O D U C T I O N  

It is surprising that Metelitsyn's 50-years-old stability criterion and stability theorems for linear non- 
conservative systems [1, 2] still cause comments and confusion. Similar stability conditions were derived 
and dealt with by Frik [3] and Huseyin [4]. The latest papers on this subject are by Seyranian [5], Kliem 
et al. [6], Merkin [7], and Zhbanov and Zhuravlev [8]. 

The subject of investigation is the stability of linear systems of the form 

A~+ (B+ G)(t+ (C+ N)q = 0 (1.1) 

which are general non-conservative models in mechanics. Here, A, B, G, C, and N are real m x m 
matrices. The mass matrixA is assumed to be symmetric and positive definite, A r = A > 0. Damping 
is characterized by the symmetric matrix B, and gyroscopic matrix G is skew-symmetric, G = -G :r. The 
potential forces are described by the symmetric matrix C, and the non-conservative positional forces 
by the skew-symmetric matrix N. Finally, the vector q represents the generalized coordinates of the 
system. 

Assuming solutions of the form q = he zt, the stability of system (1.1) can be completely understood 
in terms of the algebraic eigenvalue problem 

[)~2A + ) ~ ( B + G ) + C + N ] h = 0 ,  h ~  0 (1.2) 

the eigenvalues )~ are the roots of the characteristic polynomial of degree 2m, det[%2A + )~(B + G) + 
C + N], and if all the eigenvalues have negative real parts, system (1.1) is asymptotically stable. An 
investigation of the real parts of the eigenvalues with help of the Routh-Hurwitz criterion is very 
cumbersome and moreover, in this approach the properties of the system matrices having physical 
meaning play no role. Therefore, Metelitsyn and others went alternative ways in investigating stability. 

Since we do not entirely agree with the recent contributions [7, 8] on Metelitsyn's theory we present 
this paper with the following aims: 

1. To give a short alternative derivation of Metelitsyn's inequality, his so-called stability condition. 
2. To state the reason why this stability condition is sufficient but not necessary for asymptotic stability. 
3. To explain why the stability condition in the form given by Metelitsyn is of little use in practice 

and comment on his seven stability theorems. 
4. To show how Metelitsyn's inequality leads to a practical stability condition expressed by extreme 

eigenvalues of the system matrices. 
5. To point out the special advantage of this applicable condition for systems with complex symmetric 

matrices resulting in stability criteria for rotor systems. 
6. Finally, to give examples showing that the results gained from this applicable condition lead to 

qualitatively correct stability statements but not always to exact stability boundaries. 
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2. D E R I V A T I O N  OF M E T E L I T S Y N ' S  I N E Q U A L I T Y  

Metelitsyn pre-multiplied Eq. (1.2) by the conjugate transposed eigenvector h* and obtained the equation 
(one equation for each eigenvalue ~.) 

T~, 2 + (D + iF)~. + V + iE = 0 (2.1) 

with the coefficients 

T = h*Ah,  D = h*Bh,  iF = h*Gh,  V = h*Ch,  iE = h*Nh (2.2) 

where T, D, F, V, and E are real quantities. Additionally we assume normalized eigenvectors, 
h*h = 1. 

Metelitsyn's famous inequality now follows from claiming that both roots of (2.1), considered as a 
quadratic equation in ~., have negative real parts. Instead of an elementary but lengthy computation 
of these roots we will use a theorem by Bilharz and Schur [9]. This theorem states that both roots of 
Eq. (2.1) have negative real parts if and only if the two determinants satisfy the relations 

T F  

0 D  
>0,  

T F - V  0 

O D E  0 

O T  F - V  

O O D E  

> 0 (2.3) 

Since the matrixA > 0, the quantity T > 0, and then (2.3) is equivalent to the two conditions 

O > 0 (2.4) 

TE 2 - F D E  < D 2 V (2.5) 

Metelitsyn [1, 2] was the first to derive inequality (2.5) - by assuming condition (2.4) - and he called 
it "the condition of (asymptotic) stability of non-conservative systems" of the form (1.1). 

3. M E T E L I T S Y N ' S  I N E Q U A L I T Y  IS S U F F I C I E N T  B U T  N O T  
N E C E S S A R Y  F O R  A S Y M P T O T I C  S T A B I L I T Y  

Notice that the eigenvalue ~ is one of the two roots of Eq. (2.1), the other root need not be an eigenvalue. 
This important fact was pointed out in [5] and then repeated in [8]. But it was not recognized by 
Metelitsyn [1, 2] nor in [4], and is not mentioned in [7]. Actually, it is more an exception than a rule 
that both roots are eigenvalues. The following can be shown following a private communication by 
C. Pommer. 

Consider ~r as an eigenvalue of (1.2) with eigenvector hr and corresponding polynomial (2.1). Let 
(2.1) have two different roots ~ and ~.s. Then £s is also an eigenvalue of the system if it has hr as a left 
eigenvector, i.e. * 2 hr [~  A + ~ (B  + G) + C + N] = 0. An example for this situation is a weakly damped 
system with G = 0 and N = 0, since we can choose X~ = ~ .  

Metelitsyn's mistake, also made in [4], was to believe that both roots of (2.1) are always eigenvalues 
of problem (1.2). This mistake led to the incorrect conclusion that inequality (2.5) is a necessary and 
sufficient condition for stability. Obviously, inequalities (2.4) and (2.5) are sufficient for asymptotic stability, 
but not necessary. This can be easily demonstrated by Merkin's example [7]. 

Let system (1.1) be given by 

10 #+( 5.8186 0 [+ 0 3.6667 I)q+ 
0 1 0 0.1814 -3.6667 0 

+ (]l _0,0 _o,°1" I °_=, ='0 [I) q--° (31, 
The eigenvalues are )~1,2 = -1 _+ 0.5 i and ~.3,4 = -2  _ 0.5 i, and therefore system (3.1) is asymptotically 
stable. Computing the corresponding eigenvectors h, the coefficients (2.2) of quadratic equation (2.1) 
can be determined. The roots of this equation (one equation for each eigenvalue) are of course the 
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four eigenvalues ~1, 2 and )~3, 4, but additionally also 0.0625 _ 0.875 i and 0.1786 + 0.2857 i. These roots 
have positive real parts, and therefore - in spite of system (3.1) being asymptotically stable - Metelitsyn's 
inequality (2.5) is not satisfied, since it requires that both roots of (2.1) should have negative real parts. 

4. W H Y  M E T E L I T S Y N ' S  I N E Q U A L I T Y  IS OF L I T T L E  USE  IN 
P R A C T I C E  AND C O M M E N T S  ON HIS T H E O R E M S  

If we wish to investigate the possibility of asymptotic stability for a given system by checking inequalities 
(2.4) and (2.5) as sufficient conditions, we face the following problem. 

Metelitsyn required condition (2.5) to be satisfied when formulating several stability theorems. But 
the eigenvectors h - which are used for coefficients (2.2) and for inequalities (2.4) and (2.5) - are 
unknown (this was pointed out, for example, in [3, 7]). They can only be determined by solving eigenvalue 
problem (1.2), and then the stability analysis would be complete. So we disagree with [8] and state that 
Metelitsyn's inequality (2.5) cannot be checked in the given form without computing eigenvectors (i.e. 
also eigenvalues) of (1.2). 

However, as shown in [5], Metelitsyn's inequality (2.5) leads to the third Thomson-Tait-Chetayev 
theorem, see [10]: a statically stable system (C > 0, which implies V > 0) becomes asymptotically stable 
if arbitrary gyroscopic forces and dissipative forces with complete dissipation (D > 0) are added. Indeed, 
in the case when N = 0 (i.e. E = 0), inequality (7) reduces to D2V > 0, guaranteeing asymptotic stability. 

In the general case, based on inequalities (2.4), (2.5), Metelitsyn [1, 2] formulated seven theorems, 
(see also [7]). Two of them are also presented in [11]. Our brief comments on these theorems are the 
following. 

Theorems 1 and 2, dealing with systems with only positional forces (without dissipative and gyroscopic 
forces), cannot be deduced from (2.5), since without dissipation (D = 0) condition (2.4) is violated, 
and asymptotic stability for such systems cannot be achieved. 

The counter-examples for Theorems 3 and 4 are systems with odd number of degrees of freedom, 
which can never be stabilized by dissipative and gyroscopic forces, because the free term in the 
characteristic equation for systems with only non-conservative positional forces (C = 0), or for statically 
unstable systems with C < 0, is zero or a negative number, respectively, resulting in violation of the 
Routh-Hurwitz criterion. This was pointed out by Merkin in [7, 10]. Consequently for such systems 
inequality (2.5) can never be satisfied. For example, let system (1.1) be of dimension 3 with the matrices 

C = °°° I O b O  , 

O O c  

N = - a O T  
-p o 

Then the free term of the characteristic equation for the system det[C + N] = abc + b~ a + aT 2 + co~ 2 
is zero for a = b = c = O, (C = 0), or is a negative number for a < O, b < O, c < O, (C < O) and arbitrary 

Theorem 5 and 6 are not related to inequalities (2.4) and (2.5) (see also [8]). The counter-example 
for Theorem 7 given in [7] apparently shows that it is wrong. 

Therefore, we disagree with some of the comments in [8] concerning the practical use of inequality 
(2.5) and the validity of these seven theorems. We conclude that Metelitsyn failed in trying to use 
inequalities (2.4), (2.5) to formulate qualitative stability conditions for system (1.1). Nevertheless, we 
will show in the next sections that Metelitsyn's inequality (2.5) helps to establish applicable sufficient 
stability conditions. 

5. A P R A C T I C A L  S U F F I C I E N T  S T A B I L I T Y  C O N D I T I O N  

The field of values of a real or complex m x m matrix M is the set of complex numbers x*Mx, where x 
ranges over all complex m-dimensional vectors that are normalized, x*x = 1. The quantities defined in 
(2.2) are situated in the field of values for the respective matrices. Hermitian matrices like A, B, and 
C (real symmetric in our case) have only real eigenvalue. Their field of values is real as well as limited 
by minimum and maximum eigenvalues of the matrices, respectively. (see e.g. [12]). The quantities T, 
D, and Vfrom (2.2), known as Rayleigh quotients, are therefore also limited by minimum and maximum 
eigenvalues of the matrices A, B, and C, respectively, although we don't know the eigenvectors h. We 
emphasize that these limits depend only on the system matrices 
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a I = ~ , m i n ( A ) < T < ~ , m a x ( A )  = a 2, b l  = ~ m i n ( B ) < D < ~ , m a x ( B )  = b 2 
(5.1) 

C 1 = L m i n ( C ) ~ V < - ~ m a x ( C  ) = C 2 

The skew-Hermitian matrices G and N possess only purely imaginary eigenvalues and their field of 
values is imaginary also. In our case the matrices G and N are real skew-symmetric and iG and iN  are 
Hermitian. Therefore the fields of values of G and N are limited by the eigenvalues of maximum absolute 
value - ig and ig, and - in  and in, respectively, where g = [)~(G) I max and n = I)~(N) ] max. So we have 

- g < F < g ,  - n < E < n  (5.2) 

If we assume 
A>0,  B>0 ,  C > 0  (5.3) 

then it is easy to see, with the help of (5.2) and (5.3), then (2.5), rewritten in the form D ( D V  + FE) - 
TE 2 > 0, is satisfied for arbitrary vectors h if 

bl(blC 1 - gn)  - a2 n2 > 0 (5.4) 

Here we took the smallest value of the first term and the largest values of the second and third terms 
of the inequality. 

Under assumption (5.3), inequality (5.4) is a practical sufficient condition for asymptotic stability of 
system (1.1), which can be checked knowing only the extreme eigenvalue of the system matricesA, B, 
C, G, and N. In [3, 5, 6] similar conditions were derived, however such simple but important 
considerations do not occur [1, 2, 7, 8] on the subject. 

In [3] inequality (5.4) was solved for b 1 resulting in the assertion: system (1.1) is asymptotically stable 
if, in addition to (5.3), the damping is sufficiently large 

b I > n(g + ,/g2 + 4a2cl)1(2cl)  (5.5) 

From (5.4) we can also deduce the following stability statement: system (1.1), under assumption (5.3), 
can be stabilized by sufficiently large dissipative and/or potential forces. This follows, by making the 
term b2Cl sufficiently large, implying (5.4) is satisfied. This result was reported in [5]. Another 
consequence of inequality (5.4) is that a statically stable system with complete dissipation (assumption 
(5.3)) cannot be destabilized by adding rather small gyroscopic and positional non-conservative forces. 

6. THE STABILITY OF R O T O R  SYSTEMS 

Free lateral vibrations of a large class of rotor systems and centrifuges, where the rotating elements 
are symmetrical about the rotor axis and the bearings are isotropic, can be described by non-conservative 
systems, see e.g. [6, 13, 14] 

a l / i+  (B 1 + G1) 0 + (C 1 + N1) q = 0 (6.1) 

with the block matrices 

AI = 1 A 0 0  A ' B I =  B0]0 B ' GI = -G0 G0 ' C1 = C00 C ' N1 = -N0 N0 

HereA, B, G, C, and N are all symmetric.  Moreover, A is positive definite (>0)while B, G, and N are 
positive semi-definite (/>0). 

A convenient rewriting of system (6.1) results in the complex system. 

II q~ 
A Z + ( B + i G ) £ + ( C + i N ) z  = 0; z = q l - i q 2 ,  q = II 

q2 II 
(6.2) 

where z = ql - iq2 and q = 
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If)~ is an eigenvalue of the complex system (6.2), then 2~ and the complex conjugate ~are eigenvalues 
of the real system (6.1). One of the advantages of the complex setting is that the dimension of the matrices 
is halved. Notice that in Eq. (6.2) the system matrices B + iG and C + i N  are complex symmetric and 
are divided into their Hermitian parts B >~ 0 and C > 0 and skew-Hermitian parts iG and iN. Since 
G i> 0 and N ~> 0, another advantage of form (6.2) is that the quantities F and E in Metelitsyn's inequality 
are now limited by 

O < g l  < F < g  z, O < n l  < E < n  2 (6.3) 

where gl, nl and g2, n2 are the smallest and largest eigenvalues of the matrices G and iV, respectively. 
Then inequality (5.4) is improved to be 

b l (b lC l  + g l n l ) - a 2  n2 > 0 (6.4) 

Damping is normally split into external damping Be and internal damping Bi, B = B e + Bi, and both 
G and N are linear matrix functions of the angular velocity f2 of the rotor system, see [13] 

G = f~G 0, N = ~B i (6.5) 

where Go/> 0 is a constant symmetric matrix. This structure of N assumes coordinates q with respect 
to an inertial frame. Using a frame rotating with g2, external damping Be will appear in N ,  and C will 
be dependent on f2 (see example 1, below). 

Let 71 be the smallest eigenvalue of Go, and dl and d2 the smallest and largest eigenvalues of Bi, 
respectively. Using (6.5), we substitute these quantities into (6.4) and obtain the following estimate for 
f2 ensuring stability 

2 2 
( a 2 d  2 - d l ~ / l b l )  < 

But we can do even better. Metelitsyn's inequality (2.5) in 

~-'d2d2(a2d2-Yibl)  < 

clb~ (6.6) 

the form E ( T E  - FD) < D2Vis satisfied if 

q b  2 (6.7) 

which is advantageous compared with (6.6). We repeat, a2 and d2 are the largest eigenvalues of A and 
B i while bl, cl, and 71 are the smallest eigenvalues of B,  C, and Go, respectively. Together with the 
assumption B > 0 inequality (6.7) represents an effective suff icient  criterion for asymptotic stability of 
rotor system (6.2) and enables us to determine an estimate of the angular velocity f2 permissible for 
stability (see Examples 1 and 2 below). 

If ca i> 0 and a2d2 < y~ba, then (6.7) is satisfied for all values off2 (gyroscopic stabilization). However, 
(6.7) can be satisfied even for Ca < 0 (the statically unstable case when C is not positive definite) (see 
Example 1). 

7. EXAMPLES 

Example  1 
The simplest rotor consists of a massless shaft of circular cross section with stiffness k > 0, rotating 
with constant angular velocity I2 and carrying a single disk of mass m. External and internal damping 
are denoted by de > 0 and di > 0, respectively. With respect to an inertial frame, the equations of motion 
for the centre of mass of the disk moving in a plane perpendicular to the shaft are (see [15]) 

0 de. i oil I m O  + q +  + q = O  
0 m 0 d e + d i 0 k - d i ~  0 

(7.a) 

In the complex setting (6.2) the equation of motion has the form 

m~'+ (d  e + di)~ + (k + id l f2)z  = 0 (7.2) 

The smallest and largest eigenvalues of the system matrices are identical 

a I = a 2 = m,  b 1 = b 2 = d e + d i, c 1 = C 2 = k, d 1 = d 2 = d i 
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For system (7.1) inequality (5.4) results in 

~-~2 < k(de + di)2[(md 2) (7.3) 

Inequality (6.7) applied to the complex equation (7.2) gives the same result (7.3), which actually 
determines the correct stability limit of the system (see [15]). 

If we transform the equations of motion (7.1) to a reference system spinning with the angular velocity 
f~ of the rotor, we get 

0 m 0 d e + d i - 2 m ~  0 

+ k -  rn~ 2 0 + q = 0 

0 k - m ~  2 - d e ~  0 

(7.4) 

or in a complex setting 

m~ + (d e + d i + i 2 m ~ ) q  + (k - mf~ 2 + ide~)g  = 0 (7.5) 

In (7.4) and (7.5) we recognize Coriolis and centrifugal terms. Inequality (5.4) cannot be applied to 
(7.4) since C is not necessarily positive definite (see assumption (5.3)). But inequality (6.7) can be used 
for Eq. (7.5) resulting in 

~2de(rnd e - 2 m ( d  e + d i ) )  < (k - m ~ 2 ) ( d e  + d i )  2 (7.6) 

which again leads to stability limit (7.3). 

Example 2 
It is well known that asymmetrical steam flow in turbines leads to asymmetrical forces on the rotor blades 
and can therefore be the source of instabilities. A simple model of this situation is considered in [16]. 
With respect to an inertial frame the equation of motion in a complex setting has the form 

m~" + (d e + di)~ + (k + i(di~"~ + ks))Z = 0 (7.7) 

here m, de, di, and k denote the same coefficients as in example 1, and ks represents the steam flow. 
Since (6.5) was assumed to obtain (6.6) and (6.7), these inequalities cannot be applied in our case. 
Therefore we use inequality (6.4) with 

a 2 = m ,  b I = d e + di,  c I = k, n 1 = n 2 = ~~d i + k s 

resulting in stability for 

ks < (de + d l )4  ~k-~ - ~ d i  (7.8) 

Inequality (7.8) gives the correct stability limit, which was determined in [16] by computing the 
eigenvalues of the system. 

Example 3 
Consider the rotor from example 1 but now additionally with mass rob, damping db and stiffness kb in 
the bearings (see Fig. 1). A linear model is described by a complex 2 x 2 system (or a real 4 x 4 system) 
(see [6]) 

m 0 de + di -d i  ~ + k -k + i Z = 0 (7.9) 
0 m b - d  i d b + d i - k  k + k b L-di~') diff'~ j 
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/2 

m 

' ~ I  2.---_-. 

de 

Fig. 1 

Omit t ing  all d imensions  for  simplicity, we consider  the specific case 

m = 1, d i = 1, d e = 5, d o = 10, k = 100, k b = 400 

and different  bear ing masses  m b ~< 1. Then  

a 2 = 1, d z = 2, b I = 5 . 8 ,  C 1 = 76.4, ~'1 = 0 

such that  inequali ty (6.7) results in f2 < 25.3 for  stability. But  for  mb = 1 the correct  stability limit is 
£~cm = 110, for  m b =  0.5 we have £~c#t = 97.7 and for  rnb = 0.1 we have f~o~t = 92. These  examples  
show that  inequali ty (6.7) normal ly  implies  pessimistic stability boundar ies .  This effect  may  increase 
as the d imens ion  of  the system increase.  

T h e  examples  show that  for  s imple systems inequali t ies (5.4), (6.4), and (6.7) can reveal  the t rue  
stability boundary,  but  for more  complicated systems with higher dimensions can give qualitatively correct 
but  not  good  quant i ta t ive  results. 

We wish to thank Christian P o m m e r  for fruitful discussions and express our  appreciat ion of the interest 
to the late Academic ian  A. Yu. Ishlinskii in this research.  
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